Целью любого вида аппроксимации (на основе разделения), например, основанной на гистограммах или на традиционной кластеризации, является определение групп элементов, таких что все элементы внутри одной группы схожи по небольшому числу параметров, которые их характеризуют. Путем сохранения аппроксимаций только этих параметров можно реконструировать аппроксимацию всей группы с незначительной ошибкой. Заметим, что в терминах таксономии гистограмм эти параметры должны выбираться как параметры источника, чтобы удовлетворять ограничение разделения, выражающее требование близости.
Как мы узнаем, что параметры для элементов схожи, так что мы можем объединить их в группу и представить их в терминах параметров? Это типичный вопрос традиционного распознавания образов [], где до применения каких бы то ни было методов кластеризации имеется начальная стадия, на которой из огромного числа возможностей выбираются подходящие измерения элементов. Имеется несколько методов выполнения такого выбора, успех которых изменяется в зависимости от ситуации.
Однако следует подчеркнуть, что, в принципе, эти параметры не обязательно должны присутствовать среди исходных измерений элементов данных, представленных в проблеме, а могут быть их производными. Например, в нескольких аппроксимациях на основе гистограмм, описанных выше, для частот близость определяется напрямую, а для атрибутов это не так, поскольку внимание уделяется их протяженности. (Напомним также об успехе варианта с площадью в качестве параметра источника, которая является произведением частоты на протяженность.) Предполагается что частоты в бакете являются константой, и для их аппроксимации требуется хранить меньший объем информации, чем для значений атрибутов, относительно которых предполагается следование линейному правилу (равные протяженности). Следовательно, традиционная аппроксимация на основе гистограмм при предположениях о равномерном распределении и равномерной протяженности подразумевает кластеризацию пространства частот и протяженностей. Однако, в принципе, этот подход наилучшим образом годится не для всех распределений данных.
Для повышения точности гистограммных аппроксимаций не должно быть какого-либо фиксированного, предопределенного подхода к измерениям значений и частотам. Этот подход даже не обязан быть одним и тем же для разных бакетов. Гистограммы должны быть достаточно гибкими для использования оптимальной аппроксимации для каждого измерения в каждом бакете, такой аппроксимации, которая обеспечивает наилучшие оценки на основе наименьшего объема информации. Определение того, что из себя представляет эта оптимальная аппроксимация, является трудной задачей, для решения которой требуются дальнейшие исследования.