Классика баз данных - статьи

       

Научные измерения подвержены влиянию стандартных


Научные измерения подвержены влиянию стандартных ошибок, сходство последовательностей, образов, текстов и т.д. носит приблизительный характер. Для успешного использования в подобных областях СУБД должны обеспечивать встроенную поддержку неточных данных. Обработка запросов должна базироваться на вероятностной, недетерминированной модели; процессор запросов должен накапливать факты, чтобы обеспечивать все лучшие и лучшие ответы на запросы пользователей. У пользователей должна иметься возможность задания неточных запросов, и процессор запросов должен относиться к этому как к дополнительному источнику неполноты и неточности.

При выдаче неточного ответа на запрос пользователя система должна характеризовать уровень его точности, чтобы пользователи могли понять, достаточна ли она для их потребностей. Аналогом может быть уровень релевантности ответа, выдаваемый информационно-поисковыми системами.


  • Персонализация

    Некоторые участники собрания отмечали, что ответы на запросы должны зависеть от профиля пользователя, от имени которого поступают запросы. Ответ на запрос эксперта в данной предметной области должен отличаться от ответа на запрос новичка. Релевантность ответа тоже должна зависеть от пользователя и от контекста. Для подобной персонализации требуется среда для накопления и использования соответствующих метаданных.


  • Data Mining

    Исторически направление data mining направлено на обеспечение эффективных способов обнаружения моделей существующих наборов данных. Эти модели должны раскрывать некоторые полезные аспекты данных, скрывая детали, не являющиеся полезными для приложения. В разных исследовательских сообществах разработаны алгоритмы классификации, кластеризации, выявления ассоциативных правил и обобщения.

    Проблемой data mining в области баз данных является разработка алгоритмов и структур данных для просеивания базы данных в поисках "жемчужин". Такая обработка должна вестись в фоновом режиме с потреблением остаточных системных ресурсов. Другой важной проблемой является интеграция data mining с подсистемой поддержки запросов, оптимизацией и другими средствами базы данных, такими как триггеры.



  • Содержание  Назад  Вперед